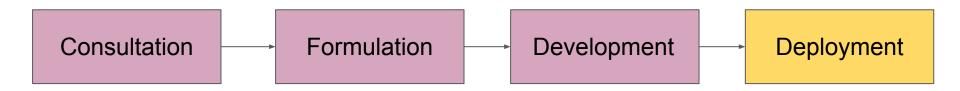
IITB Water Team Review

Phase II Delivery Post Phase II Work


1st February, 2022

Outline

- Well DBT Module
 - Objectives and workflow
 - Deployment strategy and data issues
- Report on Model Validation: Fieldwork
 - Methodology
 - Work done
- Work progress (Post Phase II)
 - Componentwise update on work done

Well DBT Module

Delivery cycle and timelines

ltem	Status
Well DBT module - code	Submitted on 29 Nov 2021 (GitLab link shared with PMU) Minor changes related to deployment ongoing
Note on Well DBT module	Submitted on 29 Nov 2021 (Minor changes and corrections ongoing)
Well DBT module - deployment	Hand-holding and assisting PMU IT team (status on next slide)

Deployment strategy and current status

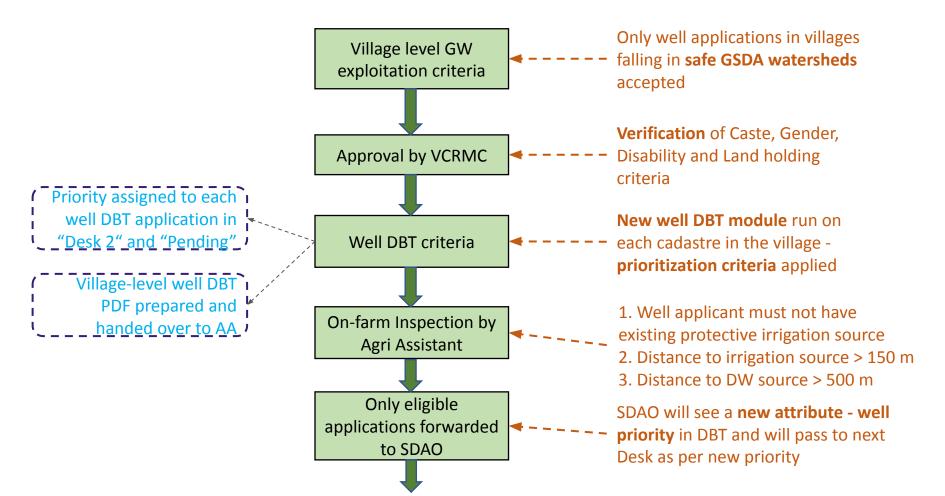
- (1) Run the QGIS plugin to compute cadastral deficit for Hingoli.
- (2) Validate the output by manual inspection and loading it in QGIS.
- (3) Generate well DBT prioritization reports for each village using the plugin output.

(4) Address schema differences between PoCRA dashboard schema and the schema currently in use by the prioritization code.

- (5) Create a copy of PoCRA dashboard schema on the PostgreSQL server on our linux workstation.
- (6) Load subset for data for Hingoli from PoCRA dashboard into the schema from previous step.
- (7) Load DBT and safe villages data into the new schema.
- (8) Run the waterbalance plugin against the PoCRA dashboard replica running on our linux workstation.
- (9) Generate well DBT prioritization reports from the plugin output and compare them with those generated in step (4).

Link for Hingoli reports: https://drive.google.com/drive/folders/1ISVfKbSq1Knt60ITv2IrPjsrxtsQDx0X?usp=sharing

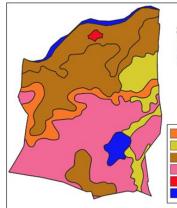
Well DBT module - objectives


1. To outline a **conceptual framework** for the prioritization of the well applications within a village and to introduce the concept of **on-farm vulnerability** as the core basis for prioritizing the well applications.

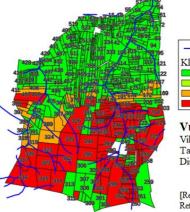
2. To design the **prioritization criteria** based on the above concept and to formulate the core functionality to translate the prioritization criteria into concrete and quantifiable indicators using the IITB water budget model at cadastre-level.

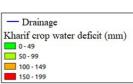
3. To incorporate the proposed indicators into the **existing framework** by integrating with the existing prioritization criteria as per well DBT guidelines.

4. To design the architecture and develop the **GIS-based well DBT prioritization module** using Python, Postgres and QGIS plugin and to create a **well-tested prototype** which can be deployed on the PoCRA server by the PMU IT team.

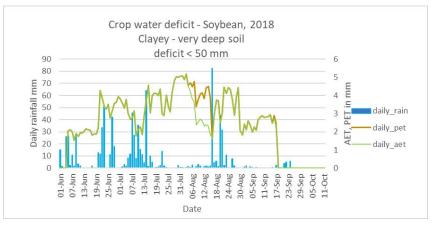

Well DBT module - workflow

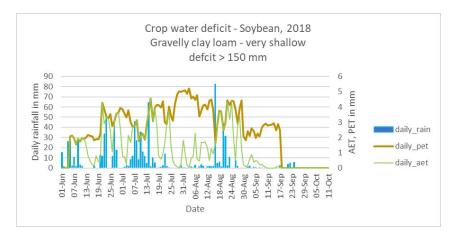
Well DBT module - prioritization criteria

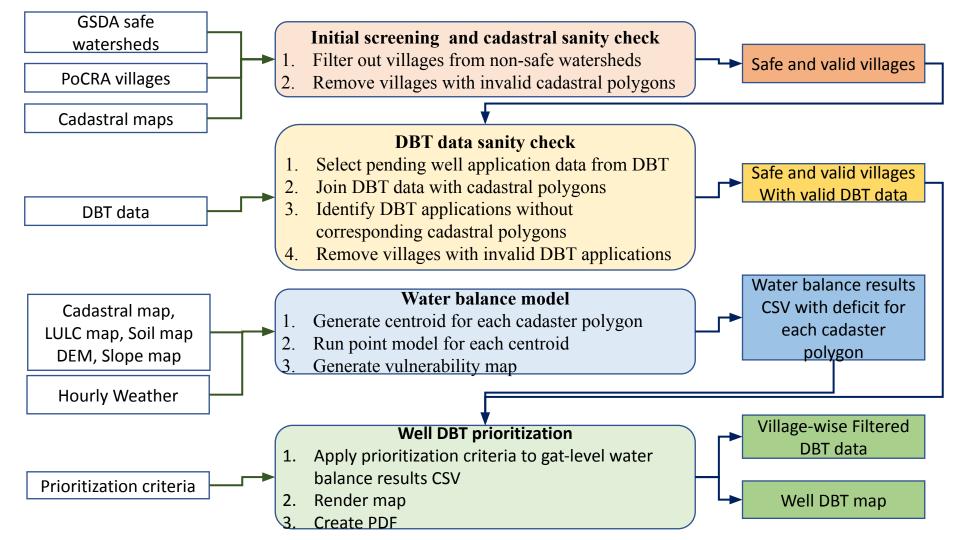

Criteria Proxies used		Method for quantification	Data sources used			
Biophysical vulnerability – kharif season	Kharif crop water deficit in mm	IITB water budget model run for each cadastre in the village	SKymet weather data, MRSAC soil maps			
Biophysical vulnerability – ability to take rabi crop	Land use category	LULC class = Only kharif given the highest priority	MRSAC land use map			
Social vulnerability	Caste, Gender	Priority given to Caste (ST, SC) , Gender (F, M)	As entered in the DBT application			
Socio-economic vulnerability	Land holding	Lower the land-holding, higher the priority	As entered in the DBT application			


Biophysical on-farm vulnerability - quantification

Soil texture and depth map Village: Waychal Pimpari Taluka: Sengaon District: Hingoli


Clay loam - Shallow (10 to 25 cm) Clayey - Deep (50 to 100 cm) Clayey Very deep (> 100 cm) Gravelly clay loam - Very shallow (< 10 cm) Habitation Mask - Habitation Mask Waterbody Mask - Waterbody Mask





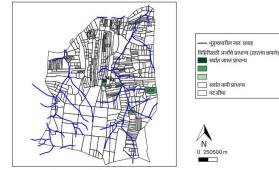
Vulnerability map Village: Waychal Pimpari Taluka: Sengaon District: Hingoli

[Reference crop: Soybean Reference year: 2018]

Page 1

जमीन वापर नकाशा आणि प्रकल्पांतर्गत विहिरीसाठी अर्जदार शेतकरी गाव: Waychal pimpari तालुका: Sengaon जिल्हा: Hingoli

— भूप्रष्ठावरील जल प्रवाह 🔲 विहिरीसाठी अर्ज असलेले गट जमीन वापर केवळ खरीप रब्बी, उन्हाळी, फळबाग, इत्यादी 📰 बिगर शेती (गावठाण, पडीक, वनक्षेत्र, इत्यादी) 🔲 गट सीमा

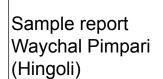

N

- भूप्रुष्ठावरील जल प्रवाह

0 250 500 m

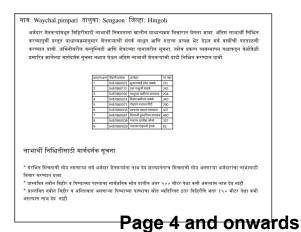
स्रोत: जमीन वापर नकाशा, महाराष्ट्र रिमोट सेन्सिंग ॲप्लिकेशन सेंटर (MRSAC) अर्जदार जेतकरी: https://dbt.mahapocra.gov.in/

विहिरीसाठी अर्जदारांचा प्राधान्यक्रम सूचविणारा नकाशा गाव: Waychal pimpari तालुका: Sengaon जिल्हा: Hingoli


Page 3

- १. खरीप पिकासाठी पाण्याची सर्वाधिक तुट सोसणारे शेतकरी
- २. केवळ खरीप पीक घेणारे शेतकरी
- ३. अत्यल्प व अल्प भधारक शेतकरी
- ४. अनुसूचित जाती अनुसूचित जमाती मधील शेतकरी
- ५. महिला व दिव्यांग शेतकरी

Well DBT report


for each

Village

Page 2 हवामान-बदल संवेदनक्षम गट नकाशा गाव: Waychal pimpari तालुका: Sengaon जिल्हा: Hingoli - भुप्रष्ठावरील जल प्रवाह खरीप पिकासाठी गट निहाय अंदाजित पाण्याची तूट (मिमी) 0-49 50 - 99 100 - 149 150 - 199 0 250500 m

सदरचा नकाणा IITB-PoCRA Water Balance model नुसार दैनंदिन पर्जन्यमानाचा विविध गटांवर मातीचा प्रकार, मातीची खोली आणि जमिनीचा उतार या घटकांमुळे होणारे परिणाम दर्शवतो. यासाठी वापरण्यात आलेले नकाशे जसे की मातीचा प्रकार, मातीची खोली हे महाराष्ट्र रिमोट सेन्सिंग अँप्रिकेशन सेंटर (MRSAC) कडन प्राप्त झाले आहेत. संदर्भवर्षः २०१८ संदर्भपीकः सोयाबीन

Well DBT module - key data issues

- Tiny cadastres
- Duplicate Gat no. within same village
- Multiple villages with same village census code
- Incorrect Gat no. values in DBT applications

В	С	D	E	F	G	H	1	J	K	L	М	N	0	Р	Q	R	
FullNan *	FullNan *	Registra *	Mobilel *	RegistrationDate 💌	Gender *	Catego: *	Priority *	Farmer' *	LandSta *	TotalLa *	Use712No	- UsedHe	UsedAr	Reg. Ap *	District *	SubDivi *	Talu
4 Krushanra	कृष्णराव व	5.48E+09	9.77E+09	17-05-2020	Male	Others	General N	/Small	YES		26 and 47		1 2	6 Verified	Aurangab	Sillod	Kanr
Sahebrao	साहेबराव -	5.48E+09	9.89E+09	24-05-2019	Male	Others	General N	/Marginal	YES		115+113+58		0 4	7 Verified	Aurangab	Sillod	Kanr
Sudarshar	सुदर्शन कृ	5.48E+09	9.53E+09	17-05-2020	Male	Others	General N	/Small	YES		26 and 47		1 2	5 Verified	Aurangab	Sillod	Kanr
Tarabai Pa	ताराबाई पं	5.48E+09	9.6E+09	24-05-2019	Female	Others	General F	Small	YES		87 88 89		1 1	4 Verified	Aurangab	Sillod	Kanr
Karbhari A	कारभारी उ	5.48E+09	9.16E+09	06-02-2020	Male	Others	General N	Other	YES		108/126/26		2 2	6 Verified	Aurangab	Sillod	Kanr
Mustak Ys	मुस्ताक यस	5.48E+09	9.56E+09	27-01-2020	Male	Others	General N	/Small	YES		42,17		1 1	8 Verified	Aurangab	Sillod	Kanr
DHANSING	धानसिंग तु	5.48E+09	9.77E+09	24-01-2019	Male	Others	General N	/Small	YES		54,57		1 4	7 Verified	Aurangab	Sillod	Kanr
Sukhadev	सुखदेव भा	5.48E+09	9.73E+09	10-03-2019	Male	Others	General N	/Small	YES		333/301		1 5	7 Verified	Aurangab	Sillod	Kanr
Sakhahari	सखाहारी -	5.6E+09	9.67E+09	09-08-2019	Male	Others	General N	/Small	YES		15/16/18/19		1 8	0 Verified	Aurangab	Sillod	Kanr
Karbhari G	कारभारी ग	5.48E+09	7.88E+09	18-02-2019	Male	Others	General N	/Small	YES		429 418 416 414		1 6	9 Verified	Aurangab	Sillod	Kanr
Vishnu Ma	विष्णू मान	5.48E+09	7.8E+09	05-06-2019	Male	Others	General N	/Small	YES		76,97		1 6	0 Verified	Aurangab	Sillod	Kanr
Laxman D	लक्ष्मण दल	5.48E+09	9.16E+09	29-06-2019	Male	Others	General N	/Small	YES		76/84		1	1 Verified	Aurangab	Sillod	Kanr
Bapuji Gar	बापूजी गण्	5.48E+09	8.41E+09	06-06-2019	Male	Others	General N	Other	YES		42/43		0 8	2 Verified	Aurangab	Sillod	Kanr
Mohan Se	मोहन सेवा	5.48E+09	9.15E+09	04-02-2019	Male	Others	General N	Other	YES		122,137,78		2 9	8 Verified	Aurangab	Sillod	Kanr
Badrinath	बद्रीनाथ धो	5.49E+09	9.82E+09	22-01-2019	Male	Others	General N	/Small	YES		52/2		2	0 Verified	Aurangab	Aurangat	Paith
Krushna B	कृष्णा बद्री	5.49E+09	9.02E+09	02-02-2019	Male	Others	General N	/Small	YES		52/2		1 2	5 Verified	Aurangab	Aurangab	Paith
Lahu Shan	लहू शंकर	5.49E+09	8.33E+09	03-03-2019	Male	Others	General N	/Small	YES		67/2		1	4 Verified	Aurangab	Aurangat	Paith
Prkash Utt	प्रकाश उत्त	5.49E+09	7.06E+09	07-03-2019	Male	Others	General N	/Small	YES		71/1		1 5	7 Verified	Aurangab	Aurangat	Paith
Shivnath \	থিবিনাথ বি	5.49E+09	7.08E+09	06-02-2019	Male	Others	General N	/Small	YES		43/3		1	0 Verified	Aurangab	Aurangat	Paith
Subhadral			9.92E+09	03-03-2019	Female	Others	General F	Small	YES		45/2		1 8	2 Verified	Aurangab	Aurangat	Paith
	sheet1	÷			***					1	m - 1 -						

Conclusion

- Well DBT module provides a robust design and framework for **identifying and targeting the beneficiaries** at the village level
- This module can be **enhanced further** to incorporate other key attributes at the farm and village level such as stream proximity, seasonal groundwater availability, yields etc. in order to make targeting more sharper.
- With the **IT stack** and the DBT portal, such tools may also be **applied to other benefits** in PoCRA and even to other watershed programs in the future.

Report on Model Validation: Fieldwork (Phase II)

Background

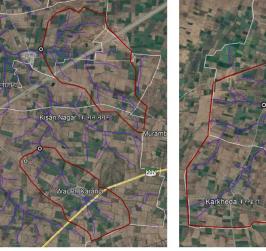
- Deliverables for Model Validation Component 3 Reports
 - Interim Report At the end of Phase II
 - Interim Report At the end of Phase III
 - Final Report At the end of Phase VI
- Interim Report Report on Model Validation: Fieldwork
 - Methodology, installation set-up, fieldwork conducted during monsoon
- Interim Report Report on Model Validation: Kharif
 - Results from Kharif season, fieldwork conducted post monsoon season
- Final Report Report on Model Validation: Rabi and Overall Closure
 - Results of the study during Rabi season and overall closure of the exercise

Overall Methodology

Model Component	Scale	Method to be used	On-field activities				
Surface Runoff	Farm	V notch with water level sensors	Total 7 farms to be monitored				
	Regional / Catchment	Water level sensors on CNB	Sensors installed at 21 locations (including catchments and their sub-catchments)				
Soil Moisture	Point / Farm	Soil moisture sensors	Total 5 farms to be monitored (2 locations per farm)				
Groundwater recharge	Regional / Catchment	Monitoring of well water levels and estimation of groundwater extraction based on farmers interviews and measurements	About 15 wells in the catchment to be monitored during kharif and rabi seasons				
AET (Indirect)	Point / Farm	Structured interviews with farmers	About 15 farmers in the catchment to be surveyed in kharif and rabi seasons				

Work Done

- Selection of clusters \rightarrow Selection of catchments \rightarrow Selection of sites
- Instruments installed: Importance and Challenges faced
 - Rain gauge,
 - Water level monitoring systems (CNBs regional, as well as V notch farm),
 - Soil moisture monitoring systems
- Installation of instruments
 - Preparatory works required
 - Installation procedure
 - Monitoring and maintenance of instruments
- Fieldwork: Flow measurement, farmer interviews


Loha Cluster

Ahmedpur Cluster

Selected Catchments and Site locations

🖈 Rain gauge

V-notch and soil moisture sensors
Water level sensor on CNB
Water level sensor in Percolation Tank

Rain gauge
V-notch and soil moisture sensors
Water level sensor on CNB
18

Karanja Cluster

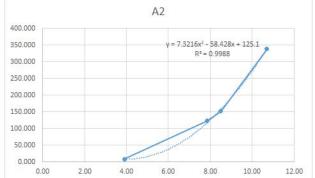
(a) Stilling well (regular)

(b) Stilling well (regular + ultrasonic)

(c) Direct mounting (regular)

(d) Direct mounting (regular + ultrasonic)

Effect of Dry Spell	on Crop Yield
K. No.	
Date	
armer Name	
Allage	
let No.	
at	
ong	
irea of the land parcel	Acre
lypa of soil	(Good/मामास, Medum/मरमम, Paar/सर्स्टी)
Nepth of soil	feat
yab	
iowing date	
Duration of the crop	days
Dop variety	
iource of seeds	(Mahabeej/ Private/ From previous year)
spected yield this year	Q/A
Assimum yield fetched from the parcel of land	Q/A
Vinimum assured yield for the parcel of land	Q/A
requently observed yield for the parcel of land মান্যদের সময়)	Q/A
iumber of dry spells this year	(1/2/3/4)
Occurrence of dry spell at crop stage	Immediately after sowing/ Flowering/ Pod formation/ Seed formation
Duration of each of the dry spell	(About 10 days/About 2 weeks/ About 3 weeks/More than 3 weeks
rrigation facility	(Yes /No)
ource of irrigation	(Well/ Bore/ CNB/ Nallah/ Percolation tank/ Other)
ocation of irrigation source	(Near or In the land parcel/ Away from the land parcel)
f away from the farm,	matters
listance of water source from the farm	
type of irrigation used	(Furrow/Sprinkler/Drip)
sumber of waterings provided	(1/2)
Date of waterings provided	
held loss due to dry spells considering no watering	Q/A
feld loss due to dry spells considering actual waterings (0/2/2) provided	Q/A



Work Progress (Post Phase II)

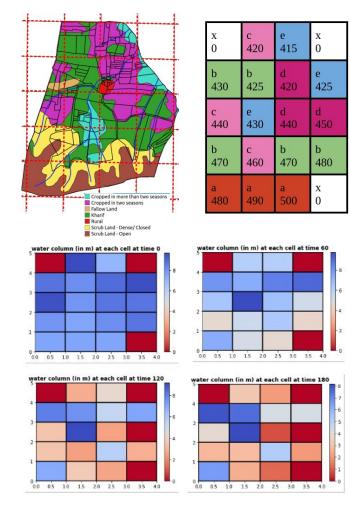
Component A: Model Validation

- Fieldwork Post monsoon
 - Well level monitoring (2 rounds completed, 3rd is underway)
 - Collection of soil sample for texture analysis
- Deskwork
 - Comparison and analysis of the sensor data
- Planned work
 - Study of texture analysis of soil samples - results from NBSS awaited
 - Comparison and analysis of the sensor data

Component B: Community Extension

- Fieldwork
 - Fieldwork in Adgaon and Mangrul for proposed community meeting
- Deskwork
 - Design of the survey format for data collection
 - Preliminary analysis of the data on crop yield
- Planned work
 - Analysis of the data on irrigation infrastructure, feasibility of water transfers
 - Field visit during mid February

Farmer Interviews


Component C: Regional Geography

- Fieldwork
 - Installation, monitoring and maintenance of the water level sensors in wells
- Deskwork
 - Design of the baby model for understanding groundwater flows and reallocation of the grondwater
 - Testing of the model results against the standard mainstream model is underway
- Planned work
 - Fieldwork in February
 - Strategy for integration of the baby model
 - Design of the framework for implementation of regional geography

Grid Model for Groundwater Flows

- About Discrete Grid Model for simulation
 - Village divided in 500m by 500m size cells
 - Regions according to LULC of village
- Case Study of Mangrul
 - Preliminary results
 - How head values will change for a given cropping pattern - match reasonably with the farmer narratives
 - Water shared between regions how much water will be available according to regions
 - Can suggest optimal cropping pattern

Comparison between water balance with and without Rabi extraction

For Mangrul

- Water demand of 210 TCM i.e. around 60% of the stock present at monsoon end
- Demand was fulfilled by 87 TCM water from baseflow and 123 TCM from GW stock
- Stream proximity regions (d and e) have more demand than the available stock in the region gw from other regions get reallocated to these regions
- In the upper reaches, reduced groundwater water outflows supported the extra demand, while, in the lower parts, the reduction in inflows caused overall groundwater levels to drop significantly, to meet the demand.

With rabi - without rabi (all flow in TCM)	Region a	Region b	Region c	Region d	Region e	Total
Total Area (Ha)	75	125	75	75	75	425
Initial GW Stock	56.7	104.78	67.07	66.3	61.53	356.38
Excess Demand Met (I)	0	15.19	53.48	69.25	73.12	211.04
From Reduced GW Stock (II)	-3.27	2.91	35.82	38.63	49.22	123.31
From Reduced BF (III)	0	1.94	0	24.2	61.57	87.71
Reduction in Inflows (IV)	-0.74	7.09	7.62	29.35	40.14	83.46
Reduction in Outflows (V)	2.53	17.43	25.28	35.76	2.47	83.47

Component D: Rabi Planning

- Preliminary fieldwork
 - FGDs with farmers on rabi plan for the year
 - Well level monitoring
- Planned Work
 - Deskwork: Design of the formats for data collection